IT2200A

rakon

Specifications

SPECIFICATION REFERENCES

1.0

Line	Parameter	Description		
1.1	Model description	IT2205AE 26.000 MHz		
1.2	RoHS compliant	Yes		
1.3	Reference number	IT2200A-183		
1.4	Rakon part number	508352		
1.5	Current Version	1.01		
1.6	Holder style	Туре 2		
2.0	FREQUENCY CHARACTE	RISTICS		
Line	Parameter	Test Condition	Value	Unit
2.1	Frequency		26.000	MHz
2.2	Frequency calibration	Offset from nominal frequency measured at 25°C±2°C	±1 max	ppm
2.3	Reflow shift	Two consecutive reflows as per attached profile after 1 hour recovery at 25°C	±1 max	ppm
2.4	Frequency stability over temperature	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range. (Note 2)	±0.5 max	ppm
2.5	Temperature range	The operating temperature range over which the frequency stability is measured	-30 to 85	°C
2.6	Frequency slope	Minimum of 1 frequency reading every 2°C over -20°C to 70°C (Note 2)	0.05 max	ppm/°C
2.7	Frequency slope	Minimum of 1 frequency reading every 2°C over -30°C to 85°C (Note 2)	0.1 max	ppm/°C
2.8	Static temperature hysteresis	Frequncy change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C	0.6 max	ppm
2.9	Supply voltage stability	Supply voltage varied $\pm 5\%$ at 25° C	±0.1 max	ppm
2.10	Load sensitivity	±10% load change at 25°C	±0.2 max	ppm
2.11	Long term stability	Frequency drift over 1 year at 25°C	±1 max	ppm
2.12	Frequency jump magnitude	Temperature ramped through a complete orbit covering the full temperature range at a rate of up to 10°C/min (Note 9)	20 max	ppb, p-p
3.0	POWER SUPPLY			
Line	Parameter	Test Condition	Value	Unit
3.1	Supply voltage	Nominal supply voltage 1.8V	1.71 to 1.89	V
3.2	Current	At maximum supply voltage (Note 6)	1.5 max	mA
4.0	OSCILLATOR OUTPUT			
Line	Parameter	Test Condition	Value	Unit
4.1	Output waveform	DC coupled clipped sine-wave (Note 8)		
4.2	Output voltage level	At minimum supply voltage (Note 6)	0.8 min	V
4.3	Output load resistance	Refer to test circuit. Typical load 10 $\ensuremath{k\Omega}$	9 to 11	kΩ
4.4	Output load capacitance	Refer to test circuit. Typical load 10pF	9 to 11	pF

5.0	SSB PHASE NOISE			
Line	Parameter	Test Condition	Value	Unit
5.1	SSB phase noise power density at 1Hz offset	Typical value for a 26MHz oscillator at 25°C	-64	dBc/Hz
5.2	SSB phase noise power density at 10Hz offset	Typical value for a 26MHz oscillator at 25°C	-92	dBc/Hz
5.3	SSB phase noise power density at 100Hz offset	Typical value for a 26MHz oscillator at 25°C	-115	dBc/Hz
5.4	SSB phase noise power density at 1kHz offset	Typical value for a 26MHz oscillator at 25°C	-135	dBc/Hz
5.5	SSB phase noise power density at 10kHz offset	Typical value for a 26MHz oscillator at 25°C	-149	dBc/Hz
5.6	SSB phase noise power density at 100kHz offset	Typical value for a 26MHz oscillator at 25°C	-150	dBc/Hz

6.0	ENVIRONMENTAL	
Line	Parameter	Description
6.1	Shock	Half sinewave acceleration of 100G peak amplitude for 6ms duration, 3 cycles each plain
6.2	Humidity	After 48 hours at 85°C±2°C 85% relative humidity non-condensing
6.3	Thermal shock	Exposed at -40°C for 30 minutes then 85° C for 30 minutes for a period of 5 days.
6.4	Vibration	10G RMS from 30 Hz to 1500 Hz Random in each of the 3 axis for 4 hours, totally 12 hours
6.5	Storage temperature	-40 to 85°C

7.0 MARKING

Line	Parameter	Description
7.1	Туре	Engraved
7.2	Line 1	Frequency and crystal date code
7.3	Line 2	Pin 1, R and TCXO date code

8.0 MANUFACTURING INFORMATION

Line	Parameter	Description
8.1	Reflow	Solder reflow processes as per profile attached.
8.2	Packaging description	Tape and reel. Standard packing quantity is 3000 units per reel

9.0 SPECIFICATION NOTES

Line	Parameter	Description
9.1	Note 1	A maximum frequency stability over the temperature is requried to be specified. Standard options are ± 0.5 ppm, ± 1.0 ppm and ± 2.5 ppm
9.2	Note 2	Parts should be shielded from drafts causing unexpected thermal gradients. Temperatue changes due to ambient air currents on the oscillator can lead to short term frequency drift
9.3	Note 3	The operating temperature range needs to be specified. The extremes for this model are -40 to 85° C
9.4	Note 4	The maximum value is the specified. A minimum value, if present, indicates the best specification available
9.5	Note 5	The unit will operate on any voltage between the minimum and maximum values
9.6	Note 6	Specified for load stated in 4.3 and 4.4 at 25°C. Current consumption depends on crystal oscillation frequency. Higher frequency will result in higher current consumption and a drop in output voltage level
9.7	Note 7	The maximum frequency tuning range depends on the design frequency and the trimming sensitivity of the crystal. Linearity performance degrades if maximum frequency tuning setting is selected
9.8	Note 8	AC-Coupled outputs require an external capacitor, ≥ 1 nF recommended
9.9	Note 9	Frequency jump: Measured between 1 second samples. Distinguished from fluctuations and noise with Gaussian or other well known distribution

Drawing Name: I(V)T2200A Model Drawing (Type 2)

DATE:

SCALE:

Millimetres

25-Oct-11

10 : 1

rako

© 2009 Rakon Limited

X.X = X.XX = X.XXX = X° = Hole =

RELATED DRAWINGS:

Drawing Name: I(V)T2200A Series Test Circuit

IT22..A TEST CIRCUIT : F1 A Active probe VCC O-Oscilloscope buffer system ′Сз C_{2} DUT C1 = Frequency counter R∟ C 10 to 1 Active Probe Input Capacitance = C₃ GND O-IVT22..A TEST CIRCUIT : A Active probe VCC O Oscilloscope buffer system C₂ DUT C1 = Frequency counter R∟ CL 10 to 1 Active Probe 3 GND O-Input Capacitance = C3 VCO **O**— IT22..AP TEST CIRCUIT : F1 Α Active probe VCC O Oscilloscope buffer system 6 C2 Ca DUT 41 C1 = Frequency counter RL С 10 to 1 Active Probe Input Capacitance = C3 GND O-ENABLE/DISABLE • IT22..AQ TEST CIRCUIT : VCC O-A Active probe Oscilloscope buffer system C2

 C_{T} = C_{L} + C_{3} (C_{3} - Oscilloscope probe capacitance) C_{T} as stated in OSCILLATOR OUTPUT section

DUT

 $C_1 \neq$

GND O-

C1: 100nF C2: ≧1nF

R∟: 10K

ENABLE/DISABLE •

╢

F1: A ferrite bead or a resistor between $22\Omega \sim 47\Omega$ recommended.

R∟

С

10 to 1 Active Probe Input Capacitance = C₃ Frequency counter

Drawing Name: 2200 Series Tape & Reel (Type 2)

TAPE DETAIL (Scale 5 : 1)

REEL DETAIL (Scale 1 : 2.5)

TITLE: 2200 SERIES TAPE & REEL (Type 2)	FILENAME:	CAT694	TOLERANCES:	
RELATED DRAWINGS:	REVISION :	Α	$XX = X.X = \pm 0.1$	
	DATE:	06-Jun-12	$X.XX = \pm 0.05$	rakon
	SCALE:	5:1	$X.XXX = X^{\circ} =$	
	Millimetres		Hole =	© 2009 Rakon Limited

Drawing Name: Pb-Free Reflow

NOTE:

The product has been tested to withstand the Reflow Profile shown. The Reflow Profile used to solder Rakon products is determined by the solder paste Manufacturer's specification. It is recommended that the Reflow Profile used does not exceed the one shown above.

TITLE: Pb-FREE REFLOW	FILENAME: CAT541	
RELATED DRAWINGS:	REVISION: B	
	DATE: 05-Sep-11	rakon
	SCALE: NTS	
	Millimetres	© 2009 Rakon Limited

Specification History					
Current Version : 1.01					
Versio n	User	Change	Note	Date	
1.0	System	Specification Created		2011-10-25 10:51	
1.01	andrew.daken	Added image 2200 Series Tape & Reel (Type 2)	Corrected Tape and reel drawing	2012-06-11 07:19	